Fiche théorique : Les équations logarithmiques simples

Rappel

Définition du logarithme en base b

Le logarithme en base b d'un nombre (réel strictement positif) a, est la puissance à laquelle il faut élever le nombre b pour obtenir a.

Nous le notons $log_b(a)$.

Exemples

$$log_2(32) = 5$$
 car $2^5 = 32$

$$log_3(81) = 4$$
 car $3^4 = 32$

$$log(100) = 2$$
 car $10^2 = 100$

Nous allons utiliser la définition des logarithmes pour résoudre des équations simples.

Prenons une équation de la forme $log_2(2x+1)=3$ à résoudre. En utilisant la définition cidessus, nous pouvons en déduire que :

$$log_2(2x+1) = 3$$
 implique que $2^3 = 2x + 1$

Nous obtenons ainsi une équation du premier degré à résoudre et nous pouvons aisément déterminer la solution de notre équation initiale.

$$2^{3} = 2x + 1$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

$$S = \{ \}$$

<u>Remarque</u>

Nous rappelons que $log_2(2x+1)$ est défini uniquement si 2x+1>0. Il est ainsi impératif de valider notre solution en vérifiant que celle-ci remplisse cette condition.

<u>Exemples</u>

 $A) \qquad log_3(2x-3)=1$

 $B) \qquad log_2(2x-3) = -2$

 \Leftrightarrow

 \Leftrightarrow

 \Leftrightarrow

 \Leftrightarrow

 \Leftrightarrow

 \Leftrightarrow

 \Leftrightarrow

S = { }

S = { }